2023 IEEE Belgrade PowerTech

Full Program »

Solving Ac Power Flow With Graph Neural Networks Under Realistic Constraints

In this paper we propose a graph neural network architecture to solve the AC power flow problem under realistic constraints. To ensure a safe and resilient operation of distribution grids, AC power flow calculations are the means of choice to determine grid operating limits or analyze grid asset utilization in planning procedures. In our approach, we demonstrate the development of a framework that uses graph neural networks to learn the physical constraints of the power flow. We present our model architecture on which we perform unsupervised training to learn a general solution of the AC power flow formulation independent of the specific topologies and supply tasks used for training. Finally, we demonstrate, validate and discuss our results on medium voltage benchmark grids. In our approach, we focus on the physical and topological properties of distribution grids to provide scalable solutions for real grid topologies. therefore, we take a data-driven approach, using large and diverse data sets consisting of realistic grid topologies, for the unsupervised training of the AC power flow graph neural network architecture and compare the results to the Newton-Raphson method. Our approach shows a high increase in computation time and good accuracy compared to state-of-the-art solvers.

Luis Böttcher
RWTH Aachen University
Germany

Hinrikus Wolf
RWTH Aachen University
Germany

Bastian Jung
RWTH Aachen University
Germany

Philipp Lutat
RWTH Aachen University
Germany

Marc Trageser
RWTH Aachen University
Germany

Oliver Pohl
Schleswig Holstein Netz AG
Germany

Xiaohu Tao
E.ON SE
Germany

Andreas Ulbig
RWTH Aachen University
Germany

Martin Grohe
RWTH Aachen University
Germany

 



Powered by OpenConf®
Copyright©2002-2022 Zakon Group LLC